O.P.Code: 20HS0836

R20

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) MCA I Year I Semester Supplementary Examinations July						
Tim	ıe:		Marks: 60					
	10.							
1	a	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M, and \neg M.$	CO 1	L1	6M			
	b	Prove by indirect method $\neg q, p \rightarrow q$ and $p \lor t$, then t. OR	CO1	L1	6M			
2	a	Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF.	CO 1	L4	6M			
-		Define Quantifiers and types of Quantifiers with examples.	CO 1	L1	6M			
		UNIT-II						
3	a	Define Relation? Write the properties of relations.	CO2	L1	6M			
	b	Let $A=\{0,1,2,3,4\}$. Show that the relation $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$ is an equivalence relation.	CO2	L4	6M			
		OR						
4	a	Define abelian group, homomorphism and isomorphism. Show that the set of all positive rational numbers forms an abelian group	CO2	L1	6M (
	b	CO2	L4	6M				
		under the composition defined by $a * b = \frac{(ab)}{2}$.						
5	a	Out of 5 men and 2 women, a committee of 3 is to be formed. In how	CO3	L1	6 M			
	1.	many ways can it be formed if at least one woman is to be included?	CO1	Т 1	<i>C</i> M			
	D	In how many ways can the letters of the word COMPUTER be arranged? How many of them begin with C and end with R? How many of them do not begin with C but end with R?	CO3	L1	6M			
(OR	CO2	т 1	(M			
6	a	Find the minimum number of students in a class to be sure that 4 out of t hem are born on the same month.	CO3	L1	6M			
	b	CO3	L3	6M				
7	a	Find the sequence generated by the function $f(x) = (3 + x)^3$.	CO 4	L6	6M			
		Find the generating function of $(n-1)^2$.	CO 4	L6	6M			
OR								
8	a	Find the generating function for the sequence 0, 2, 6, 12, 20, 30, 42	CO 4	L5	6M			
	b	Solve the recurrence relation	CO4	L6	6M			
		$a_{n+2} + 3a_{n+1} + 2a_n = 3^n$ for $n \ge 0$ given $a_0 = 0, a_1 = 1$.						

UNIT-V

9	a	Determine the number of edges in (i) Complete graph K _n (ii) Complete	CO5	L2	6M
		bipartite graph $K_{m,n}$ (iii) Cycle graph C_n (iv) Path graph P_n .			
	b	Explain about complete graph and Bipartite graph with an example.	CO5	L1	6M
		OR			
10	a	Let G be a 4 – Regular connected planar graph having 16 edges. Find	CO5	L2	6M
		the number of regions of G.			
	b	Draw the graph represented by given Adjacency matrix	CO5	L1	6M
		$\begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$			

				*** END ***						
0	1	0	1	0		1	0	1	0	
(i)					(11)	0				
	2	0	3	0	(ii)	1	0 1	1	0	
	1			- 1		1	1	v	- 1	